Shape Optimization in Stationary Blood Flow: A Numerical Study of Non-Newtonian Effects
نویسندگان
چکیده
We investigate the influence of the fluid constitutive model on the outcome of shape optimization tasks, motivated by optimal design problems in biomedical engineering. Our computations are based on the Navier-Stokes equations generalized to non-Newtonian fluid, with the CarreauYasuda model employed to account for the shear-thinning behavior of blood. The generalized Newtonian treatment exhibits striking differences in the velocity field for smaller shear rates. We apply sensitivity-based optimization procedure to a benchmark problem of flow through a rightangle cannula, and to a flow through an idealized arterial graft. For each of these problems we study the influence of the inflow velocity, and thus the shear rate. Furthermore for the arterial graft problem, we introduce an additional factor in the form of a geometric parameter, and study its effect on the optimal shape obtained.
منابع مشابه
A Numerical Analysis for the Effect of Slip Velocity and Stenosis Shape on Non-Newtonian Flow of Blood (TECHNICAL NOTE)
The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip ve...
متن کاملEffects of non-newtonian properties of blood flow on magnetic nanoparticle targeted drug delivery
Objective(s): One applications of nanotechnology is in the area of medicine which is called nanomedicine. Primary instruments in nanomedicine can help us to detect diseases and used for drug delivery to inaccessible areas of human tissues. An important issue in simulating the motion of nanoparticles is modeling blood flow as a Newtonian or non-Newtonian fluid. Sometimes blood flow is simulated ...
متن کاملNumerical Investigation of Angulation Effects in Stenosed Renal Arteries
Background: Numerical study of angulation effects of renal arteries on blood flow has been of great interest for many researchers.Objective: This paper aims at numerically determining the angulation effects of stenosed renal arteries on blood flow velocity and renal mass flow.Method: An anatomically realistic model of abdominal aorta and renal arteries is reconstructed from CT-scan images and u...
متن کاملEffect of six non-Newtonian viscosity models on hemodynamic parameters of pulsatile blood flow in stenosed artery
A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with A numerical study of hemodynamic parameters of pulsatile blood flow is presented in a stenotic artery with non-Newtonian models using ADINA. Blood flow was considered laminar, and the arterial wall was considered rigid. Studied stenosis severities were 30, 50, and 70% of the cross-section...
متن کاملShape optimization in unsteady blood flow: a numerical study of non-Newtonian effects.
This paper presents a numerical study of non-Newtonian effects on the solution of shape optimization problems involving unsteady pulsatile blood flow. We consider an idealized two dimensional arterial graft geometry. Our computations are based on the Navier-Stokes equations generalized to non-Newtonian fluid, with the modified Cross model employed to account for the shear-thinning behavior of b...
متن کامل